General Description

The AH9249 is an ultra-sensitive Hall-effect switch with digital latched output, mainly designed for battery-operation, hand-held equipments.

Special CMOS process is used for low-voltage and low-power requirement. A chopper stabilized amplifier improves stability of magnetic switch points. A sleep-awake logic controls the IC in sleep time or awake time. This function will reduce the average operating current of the IC. During the awake time, the output is changed with the magnetic flux density. During the sleep time, the output is latched in its previous state and the current consumption will reduce to some $\mu \mathrm{A}$.

The IC switching behaviour is omnipolar, either north or south pole sufficient strength will turn the output on. If the magnetic flux density is larger than operating point $\left(\mathrm{B}_{\mathrm{OP}}\right)$, the output will be turned on; if it is less than releasing point $\left(\mathrm{B}_{\mathrm{RP}}\right)$, the output will be turned off.

The AH9249 is available in TO-92S-3, SOT-23-3 and DFN- $2 \times 2-3$ packages which are optimized for most applications.

Features

- Micropower Operation
- 2.5 to 5.5 V Power Supply
- Switching for Both Poles of a Magnet (Omnipolar)
- Stabilized Chopper
- Superior Temperature Stability
- Digital Output Signal
- Built-in Pull-up Resistor
- ESD Rating: 4000V (Human Body Model)
600V (Machine Model)

Applications

- Cover Switch in Notebook PC/PDA
- Handheld Wireless Application Awake Switch
- Magnet Switch in Low Duty Cycle Applications

TO-92S-3	SOT-23-3	DFN-2×2-3

Figure 1. Package Types of AH9249

Pin Configuration

Z3 Package
N Package (TO-92S-3)
(SOT-23-3)

Figure 2. Pin Configuration of AH9249

Pin Description

Pin Number			Pin Name	Function	
TO-92S-3	SOT-23-3	DFN-2 $\times 2-3$			
1	1	1	VCC	Power supply pin	
2	3	3	GND	Ground pin	
3	2	2	OUTPUT	Output pin	

Functional Block Diagram

Figure 3. Functional Block Diagram of AH9249

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
TO-92S-3	-40 to $85^{\circ} \mathrm{C}$	AH9249Z3-G1	9249	Bulk
SOT-23-3		AH9249NTR-G1	GJ9	Tape \& Reel
DFN-2×2-3		AH9249DNTR-G1	JB	Tape \& Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Note 1)

Parameter	Symbol	Value		Unit
Supply Voltage	$\mathrm{V}_{\text {CC }}$	7		V
Supply Current (Fault)	$\mathrm{I}_{\text {CC }}$	6		mA
Output Voltage	$\mathrm{V}_{\text {Out }}$	7		V
Output Current	$\mathrm{I}_{\text {OUT }}$	2		mA
Magnetic Flux Density	B	Unlimited		Gauss
Power Dissipation	P_{D}	TO-92S-3	400	mW
		SOT-23-3	230	
		DFN-2×2-3	230	
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to 150		${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	150		
ESD (Human Body Model) (Note 2)		4000		V
ESD (Machine Model) (Note 2)		600		

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.
Note 2: Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro Static Discharge control procedures whenever handling semiconductor products.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{CC}	2.5	5.5	V
Operating Temperature	T_{OP}	-40	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Supply Voltage	V_{CC}	Operating	2.5	3	5.5	V
Supply Current	I_{AW}	Awake		2	4	mA
	I_{SL}	Sleep		6	10	$\mu \mathrm{~A}$
	$\mathrm{I}_{\mathrm{AVG}}$	Average		10	15	$\mu \mathrm{~A}$
Output Current	$\mathrm{I}_{\mathrm{OUT}}$				1.0	mA
Output Leakage Current	$\mathrm{I}_{\mathrm{LEAK}}$	$\mathrm{B}<\left\|\mathrm{B}_{\mathrm{RP}}\right\|$		<0.1	1	$\mu \mathrm{~A}$
Saturation Voltage	$\mathrm{V}_{\mathrm{SAT}}$	$\mathrm{I}_{\text {out }}=1.0 \mathrm{~mA}$		0.4	V	
Awake Mode Time	t_{AW}	Operating		150		$\mu \mathrm{~s}$
Sleep Mode Time	t_{SL}	Operating		90	120	ms
Duty Cycle	D			0.15		$\%$
Chopper Frequency	f_{C}			15		kHz

Magnetic Characteristics (Note 3)

$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Operating Point	$\mathrm{B}_{\text {OPS }}$	South pole to branded side B $>\mathrm{B}_{\text {OPS }}, V_{\text {OUT }}=$ low (output on)		30	55	Gauss
	$\mathrm{B}_{\text {OPN }}$	North pole to branded side $\mathrm{B}>\mathrm{B}_{\text {OPN }}, \mathrm{V}_{\text {OUT }}=$ low (output on)	-55	-30		Gauss
	$\mathrm{B}_{\text {RPS }}$	South pole to branded side $\mathrm{B}<\mathrm{B}_{\text {RPS }}, \mathrm{V}_{\text {OUT }}=$ high (output off)	5	20		Gauss
	$\mathrm{B}_{\text {RPN }}$	North pole to branded side $\mathrm{B}<\mathrm{B}_{\text {RPN }}, \mathrm{V}_{\text {OUT }}=$ high (output off)		-20	-5	Gauss
Hysteresis	$\mathrm{B}_{\text {HYS }}$	$\left\|\mathrm{B}_{\text {OPX }}-\mathrm{B}_{\text {RPX }}\right\|$ (Note 4$)$		10		Gauss

Note 3: The specifications stated here are guaranteed by design. 1 Gauss=0.1Mt.
Note 4: $\mathrm{B}_{\mathrm{OPX}}=$ operating point (output turns on); $\mathrm{B}_{\mathrm{RPX}}=$ releasing point (output turned off).

Magnetic Characteristics (Continued)

Figure 4. Output Voltage vs. Magnetic Flux Density

Test Conditions

Figure 5. Average Supply Current (Note 5, 6)

Note 5: I_{CC} represents the average supply current. OUTPUT is open during measurement.
Note 6: The device is put under magnetic field with $B<B_{R P}$.

Test Conditions (Continued)

Figure 6. Output Saturation Voltage (Note 7, 8)

Note 7: The output saturation voltage $\mathrm{V}_{\mathrm{SAT}}$ is measured at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$. Note 8: The device is put under magnetic field with $B>B_{\text {op }}$.

Figure 7. Magnetic Thresholds (Note 9, 10)

Note 9: B_{OP} is determined by putting the device under magnetic field swept from $\mathrm{B}_{\mathrm{RP}(\min)}$ to $\mathrm{B}_{\mathrm{OP}(\max)}$ until the output is switched on.
Note 10: $B_{R P}$ is determined by putting the device under magnetic field swept from $B_{O P(\max)}$ to $B_{R P(\min)}$ until the output is switched off.

Typical Performance Characteristics

Figure 8. Bop/BRP vs. Supply Voltage

Figure 10. Average Supply Current vs. Supply Voltage

Figure 9. $\mathrm{Bop}_{\mathrm{op}} / \mathrm{B}_{\mathrm{RP}}$ vs. Ambient Temperature

Figure 11. Awake Mode Time vs. Supply Voltage

Typical Performance Characteristics (Continued)

Figure 12. Sleep Mode Time vs. Supply Voltage

Figure 13. Power Dissipation vs. Ambient Temperature

Typical Application

Figure 14. Typical Application Circuit of AH9249

Mechanical Dimensions

TO-92S-3
Unit: mm(inch)

Mechanical Dimensions (Continued)

Mechanical Dimensions (Continued)

DFN-2×2-3
Unit: mm(inch)

BCH A

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited
No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China
Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office
Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,
China
Tel: +86-755-8826 7951
Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.
800 Yi Shan Road, Shanghai 200233, China
Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan
Tel: +886-2-2656 2808
Fax: +886-2-2656 2806

USA Office
BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel : +1-510-324-2988
Fax: +1-510-324-2788

